

Open Sound Control
Brandi Rose
MSc Student

rose.brandi@gmail.com

Thomas Haighton
MSc Student

_@thomashaighton.com

Danyi Liu
MSc Student

swell.danyi@gmail.com

ABSTRACT
In this document, we describe Open Sound Control (OSC),
a protocol used to communicate between computers, sound
synthesizers, and other multimedia devices. We will
provide a concise overview of the history behind the
development of this technology, as well as a brief technical
overview. We will also reflect on the strengths and
weaknesses of the protocol and describe how applications
are currently using Open Sound Control. Finally, we will
provide a step-by-step instruction guide to get started with
OSC.

1. PURPOSE, CONTEXT AND HISTORY
Open Sound Control is a protocol that was developed in
1997 to meet the needs of musicians that wanted more
control over sound parameters than the current standard,
Musical Instrument Digital Interface (MIDI), could provide.
In order to understand how Open Sound Control came to
be, let’s first look at major milestones in the development
of digital instrument interfaces:

• Late 1970’s: An increase in the use of electronic
musical devices due to affordability [9].

• 1979: The first U.S. recorded digital album is
released [2].

• 1981: MIDI is released as a standard peer-to-peer
serial port connection between equipment and
computers [10]. It uses predefined messages [13]
with channel, note, and controller data [8].

• 1994: Zeta Instrument Processor Interface (ZIPI) is
developed to address the limitations of MIDI.
Instead of peer-to-peer connection, it runs over
Ethernet [26]. It attempts to be the new standard,
but its unusual addressing scheme was complex
and it was never fully adopted [26].

• 1996: Synthesis toolKit Instrument Network
Interface (SKINI) is created to extend MIDI
features, and allows for messages to be sent as a
single line of text [18].

• 1997: Open Sound Control is developed, in an
effort to send interactive music over a network
protocol (Ethernet) and wanting more control over
sound parameters. MIDI was not adequate to
represent, organize or name the parameters of their
additive synthesizers [23].

• 1998: OSCKit is released as an API developer kit
for adding OSC to a real-time system using C
library [5].

• 2002: OSC 1.0 is released, as a refined protocol,
along with specifications [17].

Open Sound Control’s initial purpose was to enable
computers, sound synthesizers, and other multimedia
devices to communicate with each other [24]. It is a
network protocol that is ‘transport-independent’ and carries
messages in binary format [23]. This protocol provides
real-time control of sound and other media processing, and
has been used in web interactivity tools, software
synthesizers, a large variety programming languages, and
hardware devices for sensor measurement [16]. In this
manner, OSC acts as an enabling middleware between
devices to control parameters such as video, audio, pitch
levels, color and volume.

2. OPERATING PRINCIPLES
OSC supports a client/server architecture, in which a client
sends OSC data to a server. In this section we will describe
the architectural overview.

OSC requires an IP address and host number for
connection, especially to open a remote control from one
device to another over a local network. Each service can
only listen or send data through its assigned port [13]. For
example, if you are using an application on a smartphone to
control another application on a computer, you need to set
up the corresponding IP address and port number on the
smartphone to decide which destination the data will go to,
as well as define the same port number on the computer.

2.1 OSC packet
The unit of transmission of OSC is an OSC Packet. This
can be naturally represented by a network protocol such as
User Datagram Protocol (UDP), or stream-based protocol
such as Transmission Control Protocol (TCP). The OSC
packet must be either an OSC Message or an OSC Bundle
[17].

2.2 OSC message
The basic unit of OSC data is a message consisting of an
address pattern, a type tag string, and arguments.

2.3 OSC address pattern
An OSC address pattern is an OSC-string beginning with
the forward slash (/), as it is the full path from the root of
the address space tree to a particular node, with a slash-
delimited format like a Uniform Resource Locator (URL)
or file system pathname. For example, the address
/voices/3/freq refers to a node named ‘freq’ that is a child of
a node named ‘3’ that is a child of a top-level node named
‘voices’ [24]. Every OSC server has a set of OSC Methods
that can be invoked based on the message’s OSC address
pattern.

2.4 OSC type tag string and arguments
A type tag string is an OSC-string beginning with a comma
(,), followed by a sequence of characters corresponding
exactly to the sequence of OSC Arguments in the given
message [5]. Each character after the comma is called an
OSC Type Tag and represents the type of the corresponding
OSC Argument [5]. The different data types OSC
Arguments support are int32, float32, ASCII strings, and
blobs [15]. Other types of data some OSC implementations
support are 64-bit numbers, RGBA color, ‘True’, and
‘False’ [15].

2.5 OSC bundle and time tag
A bundle is a sequence of messages and/or bundles, which
consists of the OSC-string ‘#bundle’, and an OSC Time
Tag, followed by zero or more OSC Bundle Elements.
Time tag is used to let the server get access to the
representation of the absolute time. If a received OSC
packet contains only a single message, the OSC server
should unpack it and invoke the corresponding OSC
method. Otherwise the OSC Time Tag determines when the
OSC methods should be invoked immediately (see Figure
1) [5]. If the time tag represents a time in the future, the
server should store the bundle until the specified time
arrives. If the time tag is equal to or before the current time,
the server should unpack it and invoke the method
immediately [5].

Figure 1. Life of an OSC packet [5]

3. STRENGTHS AND WEAKNESSES
In this section we will discuss the strengths and weaknesses
of OSC compared to MIDI. The MIDI protocol was

developed by a group of American and Japanese
synthesizer manufacturers, who wanted to create a standard
protocol to transfer musical data between instruments. This
standardization was accomplished by having pre-defined
messages, a standard transfer protocol and a standard file
format. Any MIDI capable device can connect to any other
MIDI device and communicate. There are thousands of
software and hardware products that support MIDI,
compared to the dozens that support OSC [7].

In contrast, OSC is an open source network protocol with a
dynamic, open ended, URL style-naming scheme, which
allows the user to determine the address space [16]. In
section 2, we have already mentioned the specifics of OSC,
which are a large part of its uniqueness and strengths. Open
Sound Control’s main strengths are the naming scheme,
numeric and symbolic argument messages, pattern
matching language, high-resolution time tags, bundles of
messages, and a query system to dynamically find the
capabilities of an OSC server and get documentation [14].
OSC has a lot of advantages over MIDI (see Table 1).

Table 1. Table comparison of OSC and MIDI [3].

It’s biggest strength, which allows each user to design an
address space instead of selecting a predetermined set of
parameter names, is also its weakness because it is easily
adaptable to situations never envisioned by the designers
[23]. The MIDI protocol uses a compact binary message
format with a limited number of fields [22]. Because each
user can name their own address spaces, these fields can
easily be identified by name. The lack of standardization of
OSC is one of the reasons it has never replaced MIDI.

OSC also has the ability to send a continuous stream of
32bit floating point numbers, in contrast to MIDI who
mainly sends 7 bit integer values. This makes OSC a much
better alternative when dealing with electronic sensor-based
instruments, which can register minute differences in
changes. There is however a way around this limitation of
MIDI, by defining System Exclusive messages that use
other data formats such as strings and floating points [3].

Additionally, OSC includes a high-precision timestamp
with picosecond-resolution that allows OSC messages to be
scheduled, recorded and reproduced with minimal jitter.
The MIDI beat-clock is a low-resolution clock having
precision on the order of several milliseconds at best [22].
The MIDI protocol and transport do not have time-tagging
because they are intended for immediate delivery.

Another weakness of OSC is that it has a certain latency
and interference, which can cause jitter. Using the time tags
of OSC bundles, events can be scheduled with fixed delays
that account for the network transport delay in
communication between devices. Jitter is randomness in
time and may be found in the transport delay, or in the
clock synchronization error. If the clock synchronization
error is smaller than the transport jitter, which is often the
case, and the data stream uses timestamps, then it is
possible to use forward synchronization to remove jitter
from a control signal [19].

4. TYPICAL APPLICATIONS
OSC is the successor of the MIDI protocol, so typical
applications of OSC are originally in the same area as MIDI
applications. Open Sound Control’s typical application
areas are Sensor/Gesture-based electronic musical
instruments, mapping nonmusical data to sound, multiple-
user shared musical control, web interface to sound
synthesis, networked Local Area Network (LAN) musical
performance, Wide Area Network (WAN) performance,
and virtual reality [24]. We will describe two typical
applications of how OSC is being used in electronic music
production and performance.

Tablet as an interface
TouchOSC is a tablet application that musicians use as a
wireless device to control musical software on a computer.
Developed by hexler.net, the app runs on Apple and Google
devices, and is able to send and receive OSC and MIDI
messages over Wi-Fi and control CoreMIDI compatible
software, hardware and mobile apps [4].

Figure 2. TouchOSC interfaces

The interface provides visual representations of buttons,
faders, rotary dials and x-y controllers arranged in
conventional ways (see Figure 2). The user can also
personalize the layout by using the TouchOSC Editor
software. Each interface element has a specific OSC
address: /tab_number/interface_element/value and has to be

mapped by the user to a parameter in the host application.
TouchOSC comes with pre-mapped layouts, which are used
to control Digital Audio Workstations (DAW) like Ableton
Live and Apple Logic. Many apps similar to this exist, but
they all work the same way, by using the OSC protocol to
enable the tablet and computer to communicate with each
other.

Sensor/Gesture-based electronic music
Because of MIDI’s low resolution, 128 integer values and
thus only 128 steps to control a musical parameter,
electronic musicians and composers use OSC to overcome
this limitation. Having a large resolution means the
transitions between values are smoother, and therefore an
electronic musician/composer can make more subtle and
smoother changes, which gives them more expressive
control. Electronic musicians have been experimenting a lot
these past decades on how to get to a level of control that
mimics the intimacy a professional player has when playing
a traditional musical instrument [21]. Most endeavors
involve creating personalized instruments that implements
sensors, which can capture bodily movements. In addition,
each physical gesture has to be mapped to a parameter of
the sound.

One such endeavor is the Mi.Mu glove, used and co-
developed by the artist Imogen Heap [6]. The Mi.Mu
features motion tracking via an on-board Inertial
Measurement Unit (IMU) to enable real-time gesture
detection. The haptic motors provide the user with tactile
feedback without needing to see a computer screen, and the
flex/bend sensors over the knuckles track the orientation of
your hand. The Mi.Mu also has a micro controller called the
x-OSC, which takes data from all the sensors in the glove
and sends them as OSC data over Wi-Fi to an OSC server.

5. SURPRISING APPLICATIONS
Nowadays, artists are using OSC in surprising ways that
have nothing to do with controlling sound. We will go over
two, out of the many existing applications, using OSC in a
manner other than its intended use of controlling sound.

Play Array
Recently, a public interactive art piece called Play Array
was installed in the New York University Center for Urban
Science and Progress Pop Up. This interactive installation
used OSC to have two devices communicate with each
other [20]. The piece was a large pixel grid of virtual pong,
which allowed users with smartphones to play the game.
The pixel grid consisted of large LED circles that were
controlled by an Arduino Pro Mini, by which it received its
instructions over Ethernet via communication from the data
from the smartphone [20]. Open Sound Control was used to
enable the communication and send the data from the phone
to the Arduino that controlled the LEDs [20].

Silhouette Theater
Another surprising use of OSC was implemented in a

project called Silhouette Theater by three Media
Technology students at Leiden University. They developed
a modern version of the Chinese shadow puppetry Pi Ying
Xi, an ancient method of storytelling [12]. In this project,
OSC was used in two ways; 1) to send data from an Xbox
Kinect to Max/MSP to control live music and 2) to send the
data to Animata to control the animated puppet [12]. The
user stands in front of the Kinect, which tracks the user’s
body movements, and thus the movements of the animated
puppet. These movements control the sound and the
animation projected on a screen. This application is an
example of using the OSC protocol to connect with other
applications in real time.

6. GETTING STARTED

6.1. Requirements
The following guide uses Processing, an open source
programming language, to describe how to send and receive
data via Open Sound Control protocol on one computer.
Before getting started you need to download and install
Processing 2.0 or 3.0 from https://processing.org/download.

6.2. Step-by-step instruction

6.2.1. Setting up an OSC connection
After opening a new sketch in Processing, install oscP5
library by going to Sketch -> Import Library -> Add
Library, then add the following code to the top of your
sketch to import the library [1]:

import oscP5.*;
import netP5.*;

Next, we create the object OscP5 for sending OSC
messages, and the object NetAddress for storing a network
address where we are going to send the OSC messages to:

oscP5 oscP5;
NetAddress myRemoteLocation;

In order to set up an OSC connection, a port number for
listening or sending data needs to be assigned. We will send
and receive data on the same computer, thus we initialize
the oscP5 object connecting to port 7200, add IP address (in
this case 127.0.0.1 is the local loopback address) and the
same port number to the myRemoteLocation object. If you
want to open a remote connection from computer A to
computer B, then you need to proceed with a local
connection and find the IP address of computer B:

void setup() {
 //listening for incoming messages at port 7200
 oscP5 = new OscP5(this,7200);
 //sending OSC message to the device at port 7200
 myRemoteLocation = new NetAddress("127.0.0.1", 7200);
}

6.2.2 Sending and receiving OSC messages
In this example, we are using mousePressed() function to

allow the application to send OSC messages on every
mouse click. Define address with a forward slash (/), which
helps you route the data on the receiving end. Use
myMessage.add(); to add different types of data to send at
the same time, and send it to the location we specified in
myRemoteLocation (section 6.2.1):

void mousePressed() {
 // create an OSC message with address pattern
OscMessage myMessage = new OscMessage("/test");
 // add an int to the osc message
 myMessage.add(123);
 // add a float to the osc message
 myMessage.add(12.34);
 // add a string to the osc message
 myMessage.add("some text");
 oscP5.send(myMessage, myRemoteLocation);
}

The received OSC messages are passed to the
oscEvent(OscMessage OscMessage) function in
Processing. Add the following code to your sketch to
receive and parse messages:

void oscEvent(OscMessage theOscMessage) {
// check theOscMessage the address pattern
 if (theOscMessage.checkAddrPattern("/test") == true) {
// get the first osc argument
 int firstValue = theOscMessage.get(0).intValue();
// get the second osc argument
 float secondValue = theOscMessage.get(1).floatValue();
// get the third osc argument
 String thirdValue = theOscMessage.get(2).stringValue();
 println("Received values: " + firstValue + " " +
secondValue + " " + thirdValue);
 return;
 }
}

Firstly, check whether the address pattern matches since
there might be a lot of messages coming in with different
addresses. Secondly, define the corresponding data type of
each osc argument. If the incoming argument is an integer,
but the data type is defined as a float on the receiving end,
then the argument will fail to invoke.

6.2.3. Test the OSC connection
The application can be tested within println();. Press run,
then you will see the OSC messages printed out in the log
window if it succeeds.

7. FINAL THOUGHTS
Currently there is no universal protocol for music
equipment, mainly because there are too many different
synthesis methods, programming systems, levels of user
control, and forms of sound manipulation [11]. Still, OSC
continues to be a lasting web technology that is enabling
musicians and artists to do more than just control sound.
Open Sound Control is great for interactive and
collaborative work, networked art and multiplayer games,

and using gestures or sensory input to control parameters.

When having to choose between MIDI and OSC, it is
important to think about who is going to use it and for what
purpose. If a musical hardware device has to interface with
other commercial software and hardware products, it is
advisable to implement MIDI. It will be closer to a plug-
and-play device, which makes it easier to use for a regular
consumer. If a device is created for individual use, it is
easier to implement OSC, because of the ease of
implementation in different programming languages and
support through the open source community.

REFERENCES
1. Codasign.

http://learning.codasign.com/index.php?title=Sendi
ng_and_Receiving_OSC_Data_Using_Processing

2. Digital Recording.
http://en.wikipedia.org/wiki/Digital_recording

3. Freed, A., Schmeder, A. and Zbyszynski, M.,
Open Sound Control -- A flexible protocol for
sensor networking, Center for New Music &
Audio Technologies.
http://opensoundcontrol.org/files/OSC-Demo.pdf

4. Hexler.net, TouchOSC.
http://hexler.net/software/touchosc

5. Implementation and Performance Issues with
OpenSound Control, The OpenSound Control Kit.
http://archive.cnmat.berkeley.edu/OpenSoundCont
rol/Kit/ICMC98-presentation/OSC-Kit-
ICMC98.html

6. Mi.Mu Gloves. http://mimugloves.com

7. MIDI Manufacturers Association Incorporated.
http://www.midi.org/aboutmidi/midi-osc.php

8. MIDI. http://en.flossmanuals.net/pure-
data/midi/using-midi/

9. MIDI. http://en.wikipedia.org/wiki/MIDI

10. MIDI.
http://en.wikipedia.org/wiki/MIDI#The_developm
ent_of_MIDI

11. Musicradar.com, 30 years of MIDI: a brief history
(2012). http://www.musicradar.com/news/tech/30-
years-of-midi-a-brief-history-568009

12. NMNT 2015.
https://sites.google.com/site/newmedianewtechnol
ogy2015/portfolios/danyi/lab1

13. Open Sound Control.
http://en.flossmanuals.net/pure-data/ch065_osc/

14. OpenSound Control Home Page.
http://archive.cnmat.berkeley.edu/OpenSoundCont
rol/

15. Opensoundcontrol.org.
http://opensoundcontrol.org/implementation/osc-
net-v1-2

16. Opensoundcontrol.org.
http://opensoundcontrol.org/introduction-osc

17. Opensoundcontrol.org.
http://opensoundcontrol.org/spec-1_0

18. Princeton University Computer Science
Department, Synthesis toolKit Instrument Network
Interface (SKINI).
https://ccrma.stanford.edu/software/stk/skini.html

19. Schmeder, A., Freed, A. and Wessel, D., Best
Practices for Open Sound Control. In Linux Audio
Conference, 2010, 3.
http://opensoundcontrol.org/publication/best-
practices-open-sound-control

20. Urban Matter Inc. http://urbanmatterinc.com/play-
array-urban-pong-game/

21. Wessel, D. and Wright, M., Problems and
Prospects for Intimate Musical Control of
Computers. Center for New Music and Audio
Technologies, Berkeley, CA, USA, 2001.

22. What is the difference between OSC and MIDI?
http://opensoundcontrol.org/what-difference-
between-osc-and-midi

23. Wright, M. Open Sound Control: an enabling
technology for musical networking in Organised
Sound 10(3), Cambridge University Press (2005),
193-200.

24. Wright, M., Freed, A., Momeni A.: “OpenSound
Control: State of the Art 2003”. Proceedings of the
3rd Conference on New Instruments for Musical
Expression (NIME 03), Montreal, Canada, (2003),
153.

25. Wright, M., OpenSoundControl Application
Areas, 2004.
http://archive.cnmat.berkeley.edu/OpenSoundCont
rol/application-areas.html

26. Zeta Instrument Processor Interface.
http://en.wikipedia.org/wiki/Zeta_Instrument_Proc
essor_Interface

